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Abstract: This paper compares and contrasts different methods to quantify VAR for single and 
polyphase energy meters. The results for the different methods will be compared in the presence 
of different realistic harmonic content scenarios, with sometimes a 30x difference seen in results 
between the methods. By understanding the differences between VAR methodologies in the 
presence of harmonics, we can take the next steps towards metrology consensus and 
standardization on how to measure and calculate them. 
 
1. Introduction 
As countries update their energy policy and infrastructure and increase investment in smart grid 
technologies, there is greater awareness of power and energy measurements. With that comes 
greater awareness of the increasing gap between consumed real power (watts) and generated 
apparent power (VA). Furthermore, as electronic devices become more sophisticated with 
increased semiconductor content, there is a rapid proliferation of highly non-resistive and non-
linear loads. In fact, many of these new non-resistive and non-linear devices are energy-
conserving devices such as dimmers, energy-efficient motors in new appliances, and compact 
fluorescent lights that are being deployed as part of the new energy policies. 
 
Historically, reactive power (VAR) has been used to quantify the gap between consumed real 
power and generated apparent power of an AC electric power system [1]. Reactive power comes 
from 2 main sources: 

1. Phase angle   difference between the voltage and current sine waves, primarily due to 
non-resistive behavior such as device inductance or capacitance. 

2. Waveform distortion from non-linear behavior, primarily due to harmonic content. 
 
VAR is easy to determine in the first case of phase angle (non-resistive) contribution via a 
scaling factor of sin( ); therefore there is consensus among metrologists and measurement 
experts on how to quantify it. 
 
However, VAR in the second case due to harmonic currents from non-linear loads is more 
complicated. Combined with the fact that reactive power in general does not transfer energy, 
there is a lack consensus amongst metrologists on how to measure and calculate VAR in the 
presence of harmonic content. 
 
Ironically, the issue is further compounded by the observation that compared to older 
electromechanical meters, newer solid state meters have much smaller measurement error of 
active energy (watts) when supplied with active harmonic energy [2]. However, the solid state 
meters have shown widespread variation in VAR results, hence a call for “for an urgent 
international agreement” [2]. Because the utilities that produce energy need to build expensive 
base or peak generation plants based on VA and are beginning to charge consumers based on the 
VAR component, it is an important issue of fair commerce for a consensus to be achieved 
amongst metrologists. 
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This paper will: 
  Compile and review the most common VAR calculations. 9 different ones are identified 

and discussed. 
  Propose 6 representative waveforms (theoretical and actual recorded) with differing 

levels of harmonics in them to compare the results of the 9 different VAR calculations. 
Contributions from harmonics out to the 100th order are included. 

  Compare the results of the 9 different VAR calculations across the 6 different 
representative waveforms. 

  Make suggestions for next steps on how to proceed. 
 
2. Compilation and review of best-known VAR calculations 
 
Because there is no standardized nomenclature, the names for the methods were created by the 
authors and are now being used within the ANSI C12.24 committee. 
 
The 9 identified VAR calculations are classified into 3 broad types: 

  Pure fundamental calculation appropriate for a pure sinusoidal which by definition 
includes the effects of only the first harmonic and discards contributions from higher 
harmonic orders. 

  Phase shift calculations. This category has 5 variants within it: 
o Integral Phase Shift Method Fixed Frequency 
o Integral Phase Shift Method Exact Frequency 
o Differential Phase Shift Method 
o Quarter Cycle Delay Method 
o Cross Connected Phase Shift Method 

  Vector calculations. This category has 4 variants within it: 
o Vector Method using VA RMS 
o Vector Method using VA Average Responding 
o Vector Method using VA RMS & Fundamental Waveforms 

A glossary of symbols used in the formulae is given at the end of the paper. 
 

2.1. Fundamental calculation 
VARs for each element are calculated by multiplying the fundamental of the voltage times the 
fundamental of the current times the sine of the phase angle between them: 
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2.2. Phase shift VAR calculations 
The genesis behind this calculation type is primarily historical: Early analog electromechanical 
meters could only measure active (real) watthours. By introducing a known reactive element 
(typically capacitor and resistor network) into the circuit to create a known 90° phase shift on the 
voltage axis, the watt-hour measurements of the meter could in essence be “tricked” into 
measuring the reactive component. The added reactive element made the reactive portion of the 
power active so the meter could measure it, and made the active part reactive to be invisible to 
the meter. 
 
Once two sides (watts and VARs) of the power triangle are known, the third (VA) can be easily 
calculated from the power triangle as shown in Fig. 1 [3]: 

ܽଶ ൅ ܾଶ ൌ ܿଶ 
Figure 1 

 
While the phase shift method was a resourceful way to make the best use of available technology 
at the time, this method has shortcomings because the selection of the C and R values are 
frequency specific: Although the phase shift was correct, it would cause amplitude distortion as 
frequency changed. The proliferation of the phase-shift techniques was the result of future more 
sophisticated iterations of it to minimize its shortcomings. 
 
Within the phase shift methods, there are integral (integration) methods and differential 
(differentiation) methods. The concept is based on: 

׬  sin ߠ ൌ െ cos ߠ ൅ and cos  ܥ ߠ ൌ ݊݅ݏ ቀగ

ଶ
െ  ቁߠ

I.e., integrating the voltage axis gives a 90° phase shift. Differentiation works in a similar 
manner. However: 

  Integration attenuates the amplitude of the harmonics 

  Differentiation amplifies the amplitude of the harmonics 
With both, the amplitude “distortion” is proportional to the frequency. 
 
So while the phase shift was achieved, it was at the expense of amplitude distortion. These 
methods then renormalize the amplitude of the integrated (phase-shifted) voltage to create a 
voltage whose fundamental voltage would be identical in amplitude to the fundamental 
component of the voltage axis. Originally the frequency could not be measured in real time so a 
fixed value (60Hz or 50Hz as appropriate) was assumed; later the frequency was measured and 
used in the calculation or the equivalent R and C values were assigned adaptively in real time. 
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The equation for the “Integral Phase Shift Method Exact Frequency” method is: 
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Substituting (2 ×60) or (2 ×50) as appropriate for   gives the formula for “Integral Phase Shift 

Method Fixed Frequency”. 
 
The equation for “Differential Phase Shift Method” is analogously: 
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The “Quarter Cycle Delay Method” could be digitally implemented with charge-coupled devices 
to achieve the phase shifting. Its advantage over the earlier integral/differential phase shift 
methods is that it doesn’t impact the amplitude. Compared to the integration method, it appeared 
to periodically flip the sign of a given harmonic’s contribution, and so more often than not will 
make the VAR calculation be more negative. Its equation is: 
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Finally, the “Cross Connected Phase Shift Method” is based on creating a voltage that is 90° 
delayed from the voltage axis and adjusting the amplitude to match the amplitude of the voltage 
axis input.  The 90° delay is created by subtracting the voltage phase that is 240° behind from the 

voltage phase that is 120° behind.  The amplitude is then adjusted by dividing by √3. This phase 
shift and amplitude adjustment assumes that the voltages are balanced and spaced 120° apart. 
VARs for each element are calculated by multiplying the 90°-delayed amplitude-adjusted 
voltage times the current and integrating over the fundamental period: 
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Where the 90° delayed and amplitude corrected voltages are: 
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This method has been used extensively in 3-phase electromechanical meters. Its biggest 
shortcomings are: 

  The assumption of balanced voltages across the phases. This is rarely true, giving the 
wrong amplitude value in the calculation. 

  The assumption that the voltage phases are exactly 120° apart (rarely true). 
 

2.3. Vector VAR calculations 
These methods are all based on measuring VA and Watts, and calculating VAR for each phase 
from the power triangle (Fig. 1): 
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“VAR, Vector Method using VA RMS” uses the fundamental and all harmonics in the 
calculation: 
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and then substituting into Eq. 1 and Eq. 2. 
 
“VAR, Vector Method using VA Average Responding” works similarly in concept to the 
Simpson meter with a D’Arsonval meter movement [4]. It’s worth a mention for historical 
reasons: 
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One artifact is that the calculated average responding VA can be less than the watts value, 
contradicting the power triangle shown in Fig. 1. This is because, for example, a voltage signal 
which is 0 for some time – as in the case of a dimmer – ends up with a low average value. Hence 
why the RMS method is better. 
 
“VAR, Signed Vector Method using VA RMS, & Fundamental Waveforms” for polyphase 
meters attempts to prevent cancelling of signs of different harmonics by getting the sign correct 

with a multiplying factor of 
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The rest of the equations are the same as for “VAR, Vector Method using VA RMS”. One 

practical and obvious difficulty with this method is when  =0 and the signing factor blows up. 

L’Hôpital’s rule [5] must be invoked in realtime to determine which infinite value is smaller. 
 
3. Waveforms 
The six representative waveforms used to compare the results of the calculations consist of three 
theoretical ones and three actual ones recorded in the field. Their names and short descriptions 
are given here, with pictures of them in the following subsections: 

  Theoretical: 
o Sine wave voltage, Sine wave current -60° lag. Current is lagging voltage, 

simulating an inductor present in the load. This waveform is used as a reality 
check – all VARs calculations should be scaled by sin(60°), or 0.866. 

(Eq. 1) 

(Eq. 2) 
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o Sine wave voltage, Phase dimming 90° conduction angle. This represents an 
energy-conscious consumer using a light dimmer at ½ power. 

o Narrow Current  Pulse. With the proliferation of switching and Pulse Width 
Modulated (PWM) power supplies [6], this type of waveform might be reflected 
back from the load to the line. 

  Actual ones: The National Research Council Canada (NRC) recorded actual waveforms 
(WF) at a variety of sites in the field; labeled them to anonymize them; archived them; 
and made them available upon request. While the waveforms may look unbelievable, 
they are indeed real. Using a digital frequency transformer, we parameterized them into 
harmonics components out to 100th order to run them through various closed-form VARs 
calculations given in Section 2. 

o NRC WF 23. Actual waveform recorded in the field. Its V and I waveforms are 
fairly symmetric, with the V waveform having smaller high frequency spikes and 
I waveform have larger amplitude, lower frequency harmonics. 

o NRC WF139140. Actual waveform recorded in the field. Its V waveform is 
asymmetric, indicating the presence of more even harmonics. 

o NRC WF13621363. Actual waveform recorded in the field. Its V waveform is 
mostly symmetric but has significant spikes and sags. The I waveform is nearly 
square, indicating many high order harmonics. 

To better enable comparisons, all waveforms have been normalized to 1Vrms and 1Arms, i.e., 
1VArms. 

3.1. Sine wave voltage, Sine wave current -60° Lag 

 
3.2. Sine wave voltage, Phase dimming 90° conduction angle 
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3.3. Narrow Current  Pulse 

 
3.4. NRC WF 23 

 
 

3.5. NRC WF139140 

  
3.6. NRC WF13621363 
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4. Results and discussion 
A graphical summary of the results comparing the different VARs calculations for the different 
waveforms is given below: 

 
 
Observations on the results for each of the waveforms are as follows: 

  Sine wave voltage, Sine wave current -60° lag. As expected and hoped, all VARs 
methods return the same value of 0.866, so this reality check is passed. 

  Sine wave voltage, Phase dimming 90° conduction angle. 
o All integral phase shift methods gave the same value of 0.45088 because the 

voltage waveform used was a pure sine wave (no harmonics), i.e., 0||
~

|| =iV  in 

)sin(||
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||||
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o  The vector methods gave noticeably higher values versus the phase-shift methods 
because the phase-shift methods miss the contributions of the harmonics. 

o All the vector RMS methods gave identical values of 0.70539. However the 
vector average responding method was the clear outlier with a much lower value 
of 0.10101 because the voltage signal is 0 for an appreciable time, causing a lower 
average value. 

  Narrow Current Pulse. Similar comparison as the previous case of phase dimming: 
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o All integral phase shift methods gave the same value, but it’s 0 – they totally 
missed the energy. This is because the voltage waveform used was a pure sine 

wave (no harmonics), i.e., 0||
~

|| =iV  for i 1. 

o The vector methods gave noticeably higher values versus the integral methods – 
the integral methods were missing energy contributions from higher harmonics. 

o All the vector RMS methods gave identical methods of 0.76571. The vector 
average responding method was again the clear outlier of the group with a much 
smaller value because the voltage signal is 0 for an appreciable time. In fact, its 
VAR value was imaginary because erroneously VA < Watt in the radical ܸܴܣ ൌ

 ඥܸܣଶ െ  .ଶݐݐܹܽ

  NRC WF 23. The RMS vector methods show highest magnitude because they detect the 
higher harmonics on both the V and I axes. The differential phase shift method is 
noticeably lower, most likely because harmonics with negative signs got amplified by the 
differential phase-shift method and erroneously over-subtracted from the overall total. 
The vector average responding is lower because the I waveform is near zero for an 
appreciable time. 

  NRC WF139140. Here is a case with 30x differences between results. The phase-shift 
methods are erroneously lower because a pure voltage sine wave was assumed and 
they’re missing the contributions from the higher even harmonics. Again the differential 
phase-shift method is lower as it is likely amplifying a negative harmonic and over-
subtracting its contribution. 

  NRC WF13621363. Finally, a case where there is disagreement between the vector VA 
RMS methods. VA RMS is by definition using all positive quantities, so in this case the 
“VAR, Signed Vector Method using VA RMS, & Fundamental Waveforms” (last green 
bar) accounts for contributions from negative harmonics and could be more correct. 

 
5. Conclusions 
 
Significant differences are seen in VAR results on a variety of waveforms. Differences are seen 
in both sign and order of magnitude, and the agreement gets worse as the harmonic content 
increases. Due to the proliferation of already-installed electric meters with the different VARs 
methods, suggesting or mandating a single standard method and then retrofitting the field is 
impractical. The best course of action is for manufacturers, utilities, and consumers to be aware 
of the differences and act accordingly. 
 
The core issue is equity in billing in the presence of large harmonic content in both the voltage 
and current waveforms in the power grid. The power triangle (Eq. 1) only works for sinusoidal 
waveforms and so is no longer valid. Measuring real consumed power (watts) and reactive power 
(VARs) separately is in a sense a historical crutch which started out because the original meters 
could only measure real power. 
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The technology now exists to measure meter VA and VA-h at the point of use. While there still 
needs to be consensus among metrologists on VA measurements, that it much more likely to 
happen than achieving consensus on VAR measurements. Because VA is more directly related to 
actual cost of generation and more likely to achieve consensus on its measurement, it might 
make sense to start with VA and address VARs later. 
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8. Glossary 

Index “i” represents the ith phase in the poly-phase network. i=1 single-phase, maximum i is 
3 for three-phase. 

iV
~    = Potential component fundamental (1st harmonic order) 

iI
~   = Current component fundamental (1st harmonic order) 

ihV )(̂ = Potential component for harmonic order (h) 

ihI )(
ˆ = Current component for harmonic order (h) 

 (h)i  = Phase angle of the potential for harmonic order (h) 
 (h)i  = Phase angle of the current for harmonic order (h)  

iV   = Generalized potential waveform (fundamental and all harmonics) 

iI   = Generalized current waveform (fundamental and all harmonics) 

 i    = Phase angle between the fundamental potential and current,  (1)i minus  (1)i  

 t  = VAR-hour and VA-hour integration interval measured in seconds 

T  = Fundamental period 

k  = Number of fundamental periods 

   = Fundamental angular frequency = 2 f0, where f0 is the fundamental frequency 

  = Start time of integration 
||   || = Generally represents the norm of the wave function:  

   1-norm (Average) or 
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   2-norm RMS.  

X  = Absolute value of X 

ibV  = Blondel Theorem transformed Voltages  

     211 VVbV −=  , 02 =bV , 233 VVbV −=  

  


